SHENFIELD
High School

A-Level Mathematics Transition Task (compulsory for all maths students and all further maths student)

Due: $1^{\text {st }}$ Lesson of the year.
Length: 5-15 hours work (depending on prior knowledge)

This transition task provides revision for some of the sections from GCSE mathematics that are needed for A Level mathematics.
Each section contains a set of worked examples, followed by questions with answers.
All students are expected to answer all non-extension questions (with relevant written calculations) and to tick/cross their questions to show that they have marked them.
This work will be handed in during the first mathematics lesson in September.
There will also be a 1 hour assessment in the first lesson. This assessment will cover the topics from the transition task.
The marked assessment and the transition task will be considered together. Students' suitability for the course will be judged based on both their assessment and the effort they have made on transition task.

FAQ

- Help! What if I do badly on my assessment? The assessment is designed to find gaps in students' knowledge. By finding these gaps early in the course, we can offer support and intervention.
- Help! I can't answer one (or more) sections: Copy out the examples from the section and have a real go at some of the questions. The transition task is used as a measure of how much effort has been put in, so have a real try and effort will be considered.
- Help! This is taking a long time. This task should take about 5-6 hours if a student is already strong in all sections. If a student is not confident in these sections, it may take considerably longer. These topics are necessary prior knowledge for the course and so will not be taught explicitly in lessons. Mathematics A-Level is a very challenging course, requiring a large investment of time and effort - getting up to speed with these topics before September should greatly increase the likelihood that you will succeed.

Expanding brackets
 and simplifying expressions

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- When you expand one set of brackets you must multiply everything inside the bracket by what is outside.
- When you expand two linear expressions, each with two terms of the form $a x+b$, where $a \neq 0$ and $b \neq 0$, you create four terms. Two of these can usually be simplified by collecting like terms.

Examples

Example 1 Expand 4(3x-2)

$$
\begin{array}{l|l}
4(3 x-2)=12 x-8 & \begin{array}{l}
\text { Multiply everything inside the bracket } \\
\text { by the } 4 \text { outside the bracket }
\end{array}
\end{array}
$$

Example 2 Expand and simplify $3(x+5)-4(2 x+3)$

$$
\begin{aligned}
& 3(x+5)-4(2 x+3) \\
& \quad=3 x+15-8 x-12 \\
& \quad=3-5 x
\end{aligned}
$$

1 Expand each set of brackets separately by multiplying $(x+5)$ by 3 and $(2 x+3)$ by -4

2 Simplify by collecting like terms: $3 x-8 x=-5 x$ and $15-12=3$

Example 3 Expand and simplify $(x+3)(x+2)$

$$
\begin{aligned}
(x+3) & (x+2) \\
& =x(x+2)+3(x+2) \\
& =x^{2}+2 x+3 x+6 \\
& =x^{2}+5 x+6
\end{aligned}
$$

1 Expand the brackets by multiplying $(x+2)$ by x and $(x+2)$ by 3

2 Simplify by collecting like terms: $2 x+3 x=5 x$

Example 4 Expand and simplify $(x-5)(2 x+3)$

$$
\begin{aligned}
(x-5) & (2 x+3) \\
& =x(2 x+3)-5(2 x+3) \\
& =2 x^{2}+3 x-10 x-15 \\
& =2 x^{2}-7 x-15
\end{aligned}
$$

1 Expand the brackets by multiplying $(2 x+3)$ by x and $(2 x+3)$ by -5

2 Simplify by collecting like terms: $3 x-10 x=-7 x$

edexcel

Practice

1 Expand.
a $3(2 x-1)$
b $\quad-2\left(5 p q+4 q^{2}\right)$
c $\quad-\left(3 x y-2 y^{2}\right)$

2 Expand and simplify.
a $\quad 7(3 x+5)+6(2 x-8)$
b $8(5 p-2)-3(4 p+9)$
c $\quad 9(3 s+1)-5(6 s-10)$
d $2(4 x-3)-(3 x+5)$

3 Expand.

Watch out!

When multiplying (or dividing) positive and negative numbers, if the signs are the same the answer is ' + '; if the signs are different the answer is ' - '.
a $\quad 3 x(4 x+8)$
b $\quad 4 k\left(5 k^{2}-12\right)$
c $\quad-2 h\left(6 h^{2}+11 h-5\right)$
d $-3 s\left(4 s^{2}-7 s+2\right)$

4 Expand and simplify.
a $3\left(y^{2}-8\right)-4\left(y^{2}-5\right)$
b $\quad 2 x(x+5)+3 x(x-7)$
c $\quad 4 p(2 p-1)-3 p(5 p-2)$
d $3 b(4 b-3)-b(6 b-9)$

5 Expand $\frac{1}{2}(2 y-8)$

6 Expand and simplify.
a $\quad 13-2(m+7)$
b $\quad 5 p\left(p^{2}+6 p\right)-9 p(2 p-3)$

7 The diagram shows a rectangle.
Write down an expression, in terms of x, for the area of the rectangle.
Show that the area of the rectangle can be written as $21 x^{2}-35 x$

$7 x$

8 Expand and simplify.
a $\quad(x+4)(x+5)$
b $\quad(x+7)(x+3)$
c $\quad(x+7)(x-2)$
d $(x+5)(x-5)$
e $\quad(2 x+3)(x-1)$
f $(3 x-2)(2 x+1)$
g $\quad(5 x-3)(2 x-5)$
h $(3 x-2)(7+4 x)$
i $\quad(3 x+4 y)(5 y+6 x)$
j $\quad(x+5)^{2}$
k $(2 x-7)^{2}$
l $(4 x-3 y)^{2}$

Extend

9 Expand and simplify $(x+3)^{2}+(x-4)^{2}$

10 Expand and simplify.
a $\left(x+\frac{1}{x}\right)\left(x-\frac{2}{x}\right)$
b $\left(x+\frac{1}{x}\right)^{2}$

edexcel :\%

Answers

1 a $6 x-3$
b $\quad-10 p q-8 q^{2}$
c $\quad-3 x y+2 y^{2}$
2 a $21 x+35+12 x-48=33 x-13$
b $40 p-16-12 p-27=28 p-43$
c $27 s+9-30 s+50=-3 s+59=59-3 s$
d $8 x-6-3 x-5=5 x-11$
3 a $12 x^{2}+24 x$
b $\quad 20 k^{3}-48 k$
c $\quad 10 h-12 h^{3}-22 h^{2}$
d $21 s^{2}-21 s^{3}-6 s$
$4 \quad \mathbf{a} \quad-y^{2}-4$
b $5 x^{2}-11 x$
c $\quad 2 p-7 p^{2}$
d $6 b^{2}$

Surds and rationalising the denominator

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number,
for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

$\sqrt{50}=\sqrt{25 \times 2}$	$\mathbf{1}$Choose two numbers that are factors of 50. One of the factors must be a square number
$=\sqrt{25} \times \sqrt{2}$	
$=5 \times \sqrt{2}$	
$=5 \sqrt{2}$	$\mathbf{2}$Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$

Example 2 Simplify $\sqrt{147}-2 \sqrt{12}$

$$
\begin{aligned}
& \sqrt{147}-2 \sqrt{12} \\
& =\sqrt{49 \times 3}-2 \sqrt{4 \times 3} \\
& \\
& =\sqrt{49} \times \sqrt{3}-2 \sqrt{4} \times \sqrt{3} \\
& =7 \times \sqrt{3}-2 \times 2 \times \sqrt{3} \\
& =7 \sqrt{3}-4 \sqrt{3} \\
& =3 \sqrt{3}
\end{aligned}
$$

1 Simplify $\sqrt{147}$ and $2 \sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number

2 Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
3 Use $\sqrt{49}=7$ and $\sqrt{4}=2$
4 Collect like terms

Example 3 Simplify $(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})$
\(\left.\begin{array}{|l|l|}\hline(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})

=\sqrt{49}-\sqrt{7} \sqrt{2}+\sqrt{2} \sqrt{7}-\sqrt{4} \& \mathbf{1}

=7-2

=5 \& Expand the brackets. A common

mistake here is to write(\sqrt{7})^{2}=49\end{array}\right\}\)| Collect like terms: |
| :--- |
| $-\sqrt{7} \sqrt{2}+\sqrt{2} \sqrt{7}$ |
| $=-\sqrt{7} \sqrt{2}+\sqrt{7} \sqrt{2}=0$ |

Example 4 Rationalise $\frac{1}{\sqrt{3}}$

$$
\begin{aligned}
\frac{1}{\sqrt{3}} & =\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{1 \times \sqrt{3}}{\sqrt{9}} \\
& =\frac{\sqrt{3}}{3}
\end{aligned}
$$

1 Multiply the numerator and denominator by $\sqrt{3}$

2 Use $\sqrt{9}=3$

Example 5 Rationalise and simplify $\frac{\sqrt{2}}{\sqrt{12}}$

$$
\begin{aligned}
\frac{\sqrt{2}}{\sqrt{12}} & =\frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}} \\
& =\frac{\sqrt{2} \times \sqrt{4 \times 3}}{12} \\
& =\frac{2 \sqrt{2} \sqrt{3}}{12} \\
& =\frac{\sqrt{2} \sqrt{3}}{6}
\end{aligned}
$$

1 Multiply the numerator and denominator by $\sqrt{12}$

2 Simplify $\sqrt{12}$ in the numerator. Choose two numbers that are factors of 12 . One of the factors must be a square number

3 Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
4 Use $\sqrt{4}=2$
5 Simplify the fraction:
$\frac{2}{12}$ simplifies to $\frac{1}{6}$

Example 6 Rationalise and simplify $\frac{3}{2+\sqrt{5}}$

$$
\begin{aligned}
& \frac{3}{2+\sqrt{5}}=\frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}} \\
& =\frac{3(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})} \\
& =\frac{6-3 \sqrt{5}}{4+2 \sqrt{5}-2 \sqrt{5}-5} \\
& =\frac{6-3 \sqrt{5}}{-1} \\
& =3 \sqrt{5}-6
\end{aligned}
$$

1 Multiply the numerator and denominator by $2-\sqrt{5}$

2 Expand the brackets

3 Simplify the fraction

4 Divide the numerator by -1
Remember to change the sign of all terms when dividing by -1

Practice

1 Simplify.
a $\sqrt{45}$
b $\sqrt{125}$
c $\sqrt{48}$
d $\sqrt{175}$
e $\sqrt{300}$
f $\sqrt{28}$
g $\sqrt{72}$
h $\sqrt{162}$

Hint

One of the two numbers you choose at the start must be a square number.

2 Simplify.
a $\quad \sqrt{72}+\sqrt{162}$
b $\sqrt{45}-2 \sqrt{5}$
c $\quad \sqrt{50}-\sqrt{8}$
d $\sqrt{75}-\sqrt{48}$
e $2 \sqrt{28}+\sqrt{28}$
f $2 \sqrt{12}-\sqrt{12}+\sqrt{27}$

Watch out!

Check you have chosen the highest square number at the start.

3 Expand and simplify.
a $\quad(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$
b $\quad(3+\sqrt{3})(5-\sqrt{12})$
c $\quad(4-\sqrt{5})(\sqrt{45}+2)$
d $(5+\sqrt{2})(6-\sqrt{8})$

edexcel 쁯

4 Rationalise and simplify, if possible.
a $\frac{1}{\sqrt{5}}$
b $\frac{1}{\sqrt{11}}$
c $\frac{2}{\sqrt{7}}$
d $\frac{2}{\sqrt{8}}$
e $\frac{2}{\sqrt{2}}$
f $\frac{5}{\sqrt{5}}$
g $\frac{\sqrt{8}}{\sqrt{24}}$
h $\frac{\sqrt{5}}{\sqrt{45}}$

5 Rationalise and simplify
a $\frac{1}{3-\sqrt{5}}$
b $\frac{2}{4+\sqrt{3}}$
c $\frac{6}{5-\sqrt{2}}$

Extend

6 Expand and simplify $(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})$

7 Rationalise and simplify, if possible.
a $\frac{1}{\sqrt{9}-\sqrt{8}}$
b $\frac{1}{\sqrt{x}-\sqrt{y}}$

edexcel

Answers

1 a $3 \sqrt{5}$
b $5 \sqrt{5}$
c $\quad 4 \sqrt{3}$
d $5 \sqrt{7}$
e $10 \sqrt{3}$
f $2 \sqrt{7}$
g $6 \sqrt{2}$
h $9 \sqrt{2}$

2 a $15 \sqrt{2}$
b $\sqrt{5}$
c $3 \sqrt{2}$
e $6 \sqrt{7}$
d $\sqrt{3}$
f $5 \sqrt{3}$

3 a -1
b $\quad 9-\sqrt{3}$
c $\quad 10 \sqrt{5}-7$
d $26-4 \sqrt{2}$
$4 \quad \mathbf{a} \quad \frac{\sqrt{5}}{5}$
b $\frac{\sqrt{11}}{11}$
c $\frac{2 \sqrt{7}}{7}$
d $\frac{\sqrt{2}}{2}$
e $\sqrt{2}$
f $\sqrt{5}$
g $\frac{\sqrt{3}}{3}$
h $\frac{1}{3}$
$5 \quad$ a $\quad \frac{3+\sqrt{5}}{4}$
b $\frac{2(4-\sqrt{3})}{13}$
c $\quad \frac{6(5+\sqrt{2})}{23}$
$6 x-y$
$7 \quad$ a $\quad 3+2 \sqrt{2}$
b $\frac{\sqrt{x}+\sqrt{y}}{x-y}$
$5 y-4$
$6 \quad \mathbf{a} \quad-1-2 m$
b $5 p^{3}+12 p^{2}+27 p$
$77 x(3 x-5)=21 x^{2}-35 x$
8 a $x^{2}+9 x+20$
b $x^{2}+10 x+21$
c $x^{2}+5 x-14$
d $x^{2}-25$

edexcel ：⿰夫夫ty

e $\quad 2 x^{2}+x-3$
f $\quad 6 x^{2}-x-2$
g $\quad 10 x^{2}-31 x+15$
h $12 x^{2}+13 x-14$
i $\quad 18 x^{2}+39 x y+20 y^{2}$
j $\quad x^{2}+10 x+25$
k $4 x^{2}-28 x+49$
l $16 x^{2}-24 x y+9 y^{2}$
$9 \quad 2 x^{2}-2 x+25$
10 a $x^{2}-1-\frac{2}{x^{2}}$
b $\quad x^{2}+2+\frac{1}{x^{2}}$

Rules of indices

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- $a^{m} \times a^{n}=a^{m+n}$
- $\frac{a^{m}}{a^{n}}=a^{m-n}$
- $\quad\left(a^{m}\right)^{n}=a^{m n}$
- $a^{0}=1$
- $a^{\frac{1}{n}}=\sqrt[n]{a}$ i.e. the nth root of a
- $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
- $a^{-m}=\frac{1}{a^{m}}$
- The square root of a number produces two solutions, e.g. $\sqrt{16}= \pm 4$.

Examples

Example 1 Evaluate 10^{0}

$$
10^{0}=1
$$

Any value raised to the power of zero is equal to 1

Example 2 Evaluate $9^{\frac{1}{2}}$

$9^{\frac{1}{2}}$ $=$ $=3$	Use the rule $a^{\frac{1}{n}}=\sqrt[n]{a}$

Example 3 Evaluate $27^{\frac{2}{3}}$

$27^{\frac{2}{3}}$	$=(\sqrt[3]{27})^{2}$			
	$=3^{2}$			
	$=9$	\quad	$\mathbf{1}$ Use the rule $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$	
:---	:---			
2	Use $\sqrt[3]{27}=3$			

edexcel

Example 4 Evaluate 4 ${ }^{-2}$

$$
\begin{array}{rl|l}
4^{-2} & =\frac{1}{4^{2}} & \mathbf{1} \text { Use the rule } a^{-m}=\frac{1}{a^{m}} \\
& =\frac{1}{16} & 2
\end{array}
$$

Example 5 Simplify $\frac{6 x^{5}}{2 x^{2}}$

$\frac{6 x^{5}}{2 x^{2}}=3 x^{3}$	$6 \div 2=3$ and use the rule $\frac{a^{m}}{a^{n}}=a^{m-n}$ to
	give $\frac{x^{5}}{x^{2}}=x^{5-2}=x^{3}$

Example $6 \quad$ Simplify $\frac{x^{3} \times x^{5}}{x^{4}}$

$$
\begin{aligned}
\frac{x^{3} \times x^{5}}{x^{4}} & =\frac{x^{3+5}}{x^{4}}=\frac{x^{8}}{x^{4}} \\
& =x^{8-4}=x^{4}
\end{aligned}
$$

1 Use the rule $a^{m} \times a^{n}=a^{m+n}$
2 Use the rule $\frac{a^{m}}{a^{n}}=a^{m-n}$
Example $7 \quad$ Write $\frac{1}{3 x}$ as a single power of x

$\frac{1}{3 x}=\frac{1}{3} x^{-1}$	Use the rule $\frac{1}{a^{m}}=a^{-m}$, note that the fraction $\frac{1}{3}$ remains unchanged

Example 8 Write $\frac{4}{\sqrt{x}}$ as a single power of x

$$
\begin{array}{rl|l}
\frac{4}{\sqrt{x}} & =\frac{4}{x^{\frac{1}{2}}} & \mathbf{1} \text { Use the rule } a^{\frac{1}{n}}=\sqrt[n]{a} \\
& =4 x^{-\frac{1}{2}} & \mathbf{2} \text { Use the rule } \frac{1}{a^{m}}=a^{-m}
\end{array}
$$

Practice

1 Evaluate.
a 14^{0}
b $\quad 3^{0}$
c $\quad 5^{0}$
d x^{0}

2 Evaluate.
a $49^{\frac{1}{2}}$
b $64^{\frac{1}{3}}$
c $\quad 125^{\frac{1}{3}}$
d $16^{\frac{1}{4}}$

3 Evaluate.
a $25^{\frac{3}{2}}$
b $\quad 8^{\frac{5}{3}}$
c $\quad 49^{\frac{3}{2}}$
d $16^{\frac{3}{4}}$

4 Evaluate.
a 5^{-2}
b $\quad 4^{-3}$
c $\quad 2^{-5}$
d 6^{-2}

5 Simplify.
a $\frac{3 x^{2} \times x^{3}}{2 x^{2}}$
b $\frac{10 x^{5}}{2 x^{2} \times x}$
c $\frac{3 x \times 2 x^{3}}{2 x^{3}}$
d $\frac{7 x^{3} y^{2}}{14 x^{5} y}$
e $\frac{y^{2}}{y^{\frac{1}{2}} \times y}$
f $\frac{c^{\frac{1}{2}}}{c^{2} \times c^{\frac{3}{2}}}$
$\operatorname{g} \frac{\left(2 x^{2}\right)^{3}}{4 x^{0}}$
h $\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^{3}}$

Watch out!

Remember that any value raised to the power of zero is 1 . This is the rule $a^{0}=1$.
c $\quad 9^{-\frac{1}{2}} \times 2^{3}$
a $4^{-\frac{1}{2}}$
b $27^{-\frac{2}{3}}$
d $16^{\frac{1}{4}} \times 2^{-3}$
e $\left(\frac{9}{16}\right)^{-\frac{1}{2}}$
f $\left(\frac{27}{64}\right)^{-\frac{2}{3}}$

7 Write the following as a single power of x.
a $\frac{1}{x}$
b $\frac{1}{x^{7}}$
c $\quad \sqrt[4]{x}$
d $\sqrt[5]{x^{2}}$
e $\frac{1}{\sqrt[3]{x}}$
f $\frac{1}{\sqrt[3]{x^{2}}}$

edexcel :

8 Write the following without negative or fractional powers.
a x^{-3}
b $\quad x^{0}$
c $x^{\frac{1}{5}}$
d $x^{\frac{2}{5}}$
e $x^{-\frac{1}{2}}$
f $x^{-\frac{3}{4}}$

9 Write the following in the form $a x^{n}$.
a $5 \sqrt{x}$
b $\frac{2}{x^{3}}$
c $\quad \frac{1}{3 x^{4}}$
d $\frac{2}{\sqrt{x}}$
e $\frac{4}{\sqrt[3]{x}}$
f $\quad 3$

Extend

10 Write as sums of powers of x.
a $\frac{x^{5}+1}{x^{2}}$
b $\quad x^{2}\left(x+\frac{1}{x}\right)$
c $\quad x^{-4}\left(x^{2}+\frac{1}{x^{3}}\right)$

edexcel

Answers

1 a 1
b $\quad 1$
c $\quad 1$
d 1
2 a 7
b 4
c $\quad 5$
d 2
3 a 125
b $\quad 32$
c $\quad 343$
d 8
$4 \quad$ a $\quad \frac{1}{25}$
b $\quad \frac{1}{64}$
c $\quad \frac{1}{32}$
d $\frac{1}{36}$

5 a $\frac{3 x^{3}}{2}$
b $5 x^{2}$
c $3 x$
d $\frac{y}{2 x^{2}}$
e $y^{\frac{1}{2}}$
f c^{-3}
g $2 x^{6}$
h x
$6 \quad$ a $\quad \frac{1}{2}$
b $\quad \frac{1}{9}$
c $\quad \frac{8}{3}$
d $\frac{1}{4}$
e $\frac{4}{3}$
f $\frac{16}{9}$

7 a x^{-1}
b x^{-7}
c $\quad x^{\frac{1}{4}}$
d $x^{\frac{2}{5}}$
e $x^{-\frac{1}{3}}$
f $x^{-\frac{2}{3}}$
$8 \quad$ a $\quad \frac{1}{x^{3}}$
b $\quad 1$
c $\sqrt[5]{x}$
d $\sqrt[5]{x^{2}}$
e $\frac{1}{\sqrt{x}}$
f $\frac{1}{\sqrt[4]{x^{3}}}$

9 a $5 x^{\frac{1}{2}}$
b $2 x^{-3}$
c $\quad \frac{1}{3} x^{-4}$
d $2 x^{-\frac{1}{2}}$
e $\quad 4 x^{-\frac{1}{3}}$
f $3 x^{0}$

10 a $x^{3}+x^{-2}$
b $\quad x^{3}+x$
c $\quad x^{-2}+x^{-7}$

Factorising expressions

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $a x^{2}+b x+c$, where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose product is $a c$.
- An expression in the form $x^{2}-y^{2}$ is called the difference of two squares. It factorises to $(x-y)(x+y)$.

Examples

Example 1 Factorise $15 x^{2} y^{3}+9 x^{4} y$

$$
15 x^{2} y^{3}+9 x^{4} y=3 x^{2} y\left(5 y^{2}+3 x^{2}\right)
$$

The highest common factor is $3 x^{2} y$.
So take $3 x^{2} y$ outside the brackets and then divide each term by $3 x^{2} y$ to find the terms in the brackets

Example 2 Factorise $4 x^{2}-25 y^{2}$

$$
\begin{array}{l|l}
4 x^{2}-25 y^{2}=(2 x+5 y)(2 x-5 y) & \begin{array}{l}
\text { This is the difference of two squares as } \\
\text { the two terms can be written as } \\
(2 x)^{2} \text { and }(5 y)^{2}
\end{array}
\end{array}
$$

Example 3 Factorise $x^{2}+3 x-10$

$$
\begin{aligned}
& b=3, a c=-10 \\
& \begin{aligned}
\text { So } x^{2}+3 x-10 & =x^{2}+5 x-2 x-10 \\
& =x(x+5)-2(x+5) \\
& =(x+5)(x-2)
\end{aligned}
\end{aligned}
$$

1 Work out the two factors of $a c=-10$ which add to give $b=3$ (5 and -2)
2 Rewrite the b term (3x) using these two factors
3 Factorise the first two terms and the last two terms
$4(x+5)$ is a factor of both terms

Example 4 Factorise $6 x^{2}-11 x-10$

$b=-11, a c=-60$	$\mathbf{1}$Work out the two factors of $a c=-60$ which add to give $b=-11$ $(-15$ and 4)
So $6 x^{2}-11 x-10=6 x^{2}-15 x+4 x-10$	2Rewrite the b term $(-11 x)$ using these two factors $=3 x(2 x-5)+2(2 x-5)$ $=(2 x-5)(3 x+2)$
3Factorise the first two terms and the last two terms (2x-5) is a factor of both terms	

Example 5 Simplify $\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}$

$$
\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}
$$

For the numerator:
$b=-4, a c=-21$
So
$x^{2}-4 x-21=x^{2}-7 x+3 x-21$
$=x(x-7)+3(x-7)$
$=(x-7)(x+3)$
For the denominator:
$b=9, a c=18$
So
$2 x^{2}+9 x+9=2 x^{2}+6 x+3 x+9$

$$
=2 x(x+3)+3(x+3)
$$

$$
=(x+3)(2 x+3)
$$

So

$$
\begin{aligned}
\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9} & =\frac{(x-7)(x+3)}{(x+3)(2 x+3)} \\
& =\frac{x-7}{2 x+3}
\end{aligned}
$$

1 Factorise the numerator and the denominator

2 Work out the two factors of $a c=-21$ which add to give $b=-4$ (-7 and 3)

3 Rewrite the b term ($-4 x$) using these two factors
4 Factorise the first two terms and the last two terms
$5(x-7)$ is a factor of both terms
6 Work out the two factors of $a c=18$ which add to give $b=9$ (6 and 3)

7 Rewrite the b term ($9 x$) using these two factors
8 Factorise the first two terms and the last two terms
$9(x+3)$ is a factor of both terms
$10(x+3)$ is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1

edexcel

Practice

1 Factorise.
a $\quad 6 x^{4} y^{3}-10 x^{3} y^{4}$
b $\quad 21 a^{3} b^{5}+35 a^{5} b^{2}$
c $25 x^{2} y^{2}-10 x^{3} y^{2}+15 x^{2} y^{3}$

2 Factorise

Hint

Take the highest common factor outside the bracket.
a $\quad x^{2}+7 x+12$
b $\quad x^{2}+5 x-14$
c $x^{2}-11 x+30$
d $x^{2}-5 x-24$
e $\quad x^{2}-7 x-18$
f $x^{2}+x-20$
g $\quad x^{2}-3 x-40$
h $x^{2}+3 x-28$

3 Factorise
a $36 x^{2}-49 y^{2}$
b $4 x^{2}-81 y^{2}$
c $\quad 18 a^{2}-200 b^{2} c^{2}$

4 Factorise
a $\quad 2 x^{2}+x-3$
b $6 x^{2}+17 x+5$
c $\quad 2 x^{2}+7 x+3$
d $9 x^{2}-15 x+4$
e $10 x^{2}+21 x+9$
f $12 x^{2}-38 x+20$

5 Simplify the algebraic fractions.
a $\frac{2 x^{2}+4 x}{x^{2}-x}$
b $\frac{x^{2}+3 x}{x^{2}+2 x-3}$
c $\frac{x^{2}-2 x-8}{x^{2}-4 x}$
d $\frac{x^{2}-5 x}{x^{2}-25}$
e $\frac{x^{2}-x-12}{x^{2}-4 x}$
f $\frac{2 x^{2}+14 x}{2 x^{2}+4 x-70}$

6 Simplify
a $\frac{9 x^{2}-16}{3 x^{2}+17 x-28}$
b $\frac{2 x^{2}-7 x-15}{3 x^{2}-17 x+10}$
c $\frac{4-25 x^{2}}{10 x^{2}-11 x-6}$
d $\frac{6 x^{2}-x-1}{2 x^{2}+7 x-4}$

Extend

7 Simplify $\sqrt{x^{2}+10 x+25}$

8 Simplify $\frac{(x+2)^{2}+3(x+2)^{2}}{x^{2}-4}$

edexcel

Answers

1 a $2 x^{3} y^{3}(3 x-5 y)$
b $\quad 7 a^{3} b^{2}\left(3 b^{3}+5 a^{2}\right)$
c $5 x^{2} y^{2}(5-2 x+3 y)$
$2 \quad \mathbf{a} \quad(x+3)(x+4)$
b $\quad(x+7)(x-2)$
c $\quad(x-5)(x-6)$
d $(x-8)(x+3)$
e $\quad(x-9)(x+2)$
g $(x-8)(x+5)$
f $\quad(x+5)(x-4)$
h $(x+7)(x-4)$

3 a $(6 x-7 y)(6 x+7 y)$
b $\quad(2 x-9 y)(2 x+9 y)$
c $2(3 a-10 b c)(3 a+10 b c)$
4 a $(x-1)(2 x+3)$
b $\quad(3 x+1)(2 x+5)$
c $\quad(2 x+1)(x+3)$
d $(3 x-1)(3 x-4)$
e $\quad(5 x+3)(2 x+3)$
f $2(3 x-2)(2 x-5)$

5 a $\frac{2(x+2)}{x-1}$
b $\frac{x}{x-1}$
c $\frac{x+2}{x}$
d $\frac{x}{x+5}$
e $\frac{x+3}{x}$
f $\frac{x}{x-5}$

6 a $\frac{3 x+4}{x+7}$
b $\quad \frac{2 x+3}{3 x-2}$
c $\frac{2-5 x}{2 x-3}$
d $\frac{3 x+1}{x+4}$
$7 \quad(x+5)$
$8 \frac{4(x+2)}{x-2}$

Completing the square

A LEVEL LINKS

Scheme of work: 1 b . Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Completing the square for a quadratic rearranges $a x^{2}+b x+c$ into the form $p(x+q)^{2}+r$
- If $a \neq 1$, then factorise using a as a common factor.

Examples

Example 1 Complete the square for the quadratic expression $x^{2}+6 x-2$

$$
\begin{array}{l|l}
\begin{array}{l}
x^{2}+6 x-2 \\
=(x+3)^{2}-9-2
\end{array} & \mathbf{1} \text { Write } x^{2}+b x+c \text { in the form } \\
=(x+3)^{2}-11 & \text { 2 } \begin{array}{l}
\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c \\
\text { Simplify }
\end{array}
\end{array}
$$

Example 2 Write $2 x^{2}-5 x+1$ in the form $p(x+q)^{2}+r$

$$
\begin{aligned}
& 2 x^{2}-5 x+1 \\
& =2\left(x^{2}-\frac{5}{2} x\right)+1 \\
& =2\left[\left(x-\frac{5}{4}\right)^{2}-\left(\frac{5}{4}\right)^{2}\right]+1 \\
& =2\left(x-\frac{5}{4}\right)^{2}-\frac{25}{8}+1 \\
& =2\left(x-\frac{5}{4}\right)^{2}-\frac{17}{8}
\end{aligned}
$$

1 Before completing the square write $a x^{2}+b x+c$ in the form $a\left(x^{2}+\frac{b}{a} x\right)+c$
2 Now complete the square by writing $x^{2}-\frac{5}{2} x$ in the form $\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}$

3 Expand the square brackets - don't forget to multiply $\left(\frac{5}{4}\right)^{2}$ by the factor of 2

4 Simplify

edexcel

Practice

1 Write the following quadratic expressions in the form $(x+p)^{2}+q$
a $\quad x^{2}+4 x+3$
b $x^{2}-10 x-3$
c $x^{2}-8 x$
d $x^{2}+6 x$
e $\quad x^{2}-2 x+7$
f $\quad x^{2}+3 x-2$

2 Write the following quadratic expressions in the form $p(x+q)^{2}+r$
a $2 x^{2}-8 x-16$
b $4 x^{2}-8 x-16$
c $3 x^{2}+12 x-9$
d $2 x^{2}+6 x-8$

3 Complete the square.
a $\quad 2 x^{2}+3 x+6$
b $3 x^{2}-2 x$
c $5 x^{2}+3 x$
d $3 x^{2}+5 x+3$

Extend

4 Write $\left(25 x^{2}+30 x+12\right)$ in the form $(a x+b)^{2}+c$.

edexcel :\%

Answers

1 a $(x+2)^{2}-1$
c $\quad(x-4)^{2}-16$
e $\quad(x-1)^{2}+6$

2 a $\quad 2(x-2)^{2}-24$
c $3(x+2)^{2}-21$

3 a $2\left(x+\frac{3}{4}\right)^{2}+\frac{39}{8}$
c $\quad 5\left(x+\frac{3}{10}\right)^{2}-\frac{9}{20}$
d $3\left(x+\frac{5}{6}\right)^{2}+\frac{11}{12}$
$4 \quad(5 x+3)^{2}+3$
b $(x-5)^{2}-28$
d $(x+3)^{2}-9$
f $\left(x+\frac{3}{2}\right)^{2}-\frac{17}{4}$
b $\quad 4(x-1)^{2}-20$
d $2\left(x+\frac{3}{2}\right)^{2}-\frac{25}{2}$
b $3\left(x-\frac{1}{3}\right)^{2}-\frac{1}{3}$

Solving quadratic equations by
 factorisation

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $a x^{2}+b x+c=0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose products is $a c$.
- When the product of two numbers is 0 , then at least one of the numbers must be 0 .
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5 x^{2}=15 x$

$$
\begin{aligned}
& 5 x^{2}=15 x \\
& 5 x^{2}-15 x=0 \\
& 5 x(x-3)=0 \\
& \text { So } 5 x=0 \text { or }(x-3)=0 \\
& \text { Therefore } x=0 \text { or } x=3
\end{aligned}
$$

1 Rearrange the equation so that all of the terms are on one side of the equation and it is equal to zero. Do not divide both sides by x as this would lose the solution $x=0$.
2 Factorise the quadratic equation. $5 x$ is a common factor.
3 When two values multiply to make zero, at least one of the values must be zero.
4 Solve these two equations.

Example 2 Solve $x^{2}+7 x+12=0$
$x^{2}+7 x+12=0$
$b=7, a c=12$
$x^{2}+4 x+3 x+12=0$
$x(x+4)+3(x+4)=0$
$(x+4)(x+3)=0$
So $(x+4)=0$ or $(x+3)=0$
Therefore $x=-4$ or $x=-3$

1 Factorise the quadratic equation.
Work out the two factors of $a c=12$
which add to give you $b=7$.
(4 and 3)
2 Rewrite the b term (7x) using these two factors.
3 Factorise the first two terms and the last two terms.
$4(x+4)$ is a factor of both terms.
5 When two values multiply to make zero, at least one of the values must be zero.
6 Solve these two equations.

Example 3 Solve $9 x^{2}-16=0$

$$
\begin{aligned}
& 9 x^{2}-16=0 \\
& (3 x+4)(3 x-4)=0 \\
& \text { So }(3 x+4)=0 \text { or }(3 x-4)=0 \\
& x=-\frac{4}{3} \text { or } x=\frac{4}{3}
\end{aligned}
$$

1 Factorise the quadratic equation. This is the difference of two squares as the two terms are $(3 x)^{2}$ and $(4)^{2}$.
2 When two values multiply to make zero, at least one of the values must be zero.
3 Solve these two equations.

Example 4 Solve $2 x^{2}-5 x-12=0$

$$
b=-5, a c=-24
$$

So $2 x^{2}-8 x+3 x-12=0$
$2 x(x-4)+3(x-4)=0$
$(x-4)(2 x+3)=0$
So $(x-4)=0$ or $(2 x+3)=0$
$x=4$ or $x=-\frac{3}{2}$

1 Factorise the quadratic equation.
Work out the two factors of $a c=-24$ which add to give you $b=-5$.
(-8 and 3)
2 Rewrite the b term ($-5 x$) using these two factors.
3 Factorise the first two terms and the last two terms.
$4(x-4)$ is a factor of both terms.
5 When two values multiply to make zero, at least one of the values must be zero.
6 Solve these two equations.

Practice

1 Solve
a $\quad 6 x^{2}+4 x=0$
b $28 x^{2}-21 x=0$
c $\quad x^{2}+7 x+10=0$
d $x^{2}-5 x+6=0$
e $\quad x^{2}-3 x-4=0$
f $\quad x^{2}+3 x-10=0$
g $\quad x^{2}-10 x+24=0$
h $\quad x^{2}-36=0$
i $\quad x^{2}+3 x-28=0$
j $x^{2}-6 x+9=0$
k $2 x^{2}-7 x-4=0$
l $3 x^{2}-13 x-10=0$

2 Solve
a $\quad x^{2}-3 x=10$
b $x^{2}-3=2 x$
c $\quad x^{2}+5 x=24$
d $x^{2}-42=x$
e $\quad x(x+2)=2 x+25$
f $\quad x^{2}-30=3 x-2$
g $\quad x(3 x+1)=x^{2}+15$
h $3 x(x-1)=2(x+1)$

Hint

Get all terms onto one side of the equation.

Solving quadratic equations by completing the square

A LEVEL LINKS

Scheme of work: 1 b . Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Completing the square lets you write a quadratic equation in the form $p(x+q)^{2}+r=0$.

Examples

Example 5 Solve $x^{2}+6 x+4=0$. Give your solutions in surd form.

$x^{2}+6 x+4=0$	1 Write $x^{2}+b x+c=0$ in the form
$(x+3)^{2}-9+4=0$	$\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c=0$
$(x+3)^{2}-5=0$	2 Simplify.
$(x+3)^{2}=5$	3 Rearrange the equation to work out x. First, add 5 to both sides.
$x+3= \pm \sqrt{5}$	4 Square root both sides. Remember that the square root of a
$x= \pm \sqrt{5}-3$	value gives two answers. 5 Subtract 3 from both sides to solve
So $x=-\sqrt{5}-3$ or $x=\sqrt{5}-3$	the equation. 6 Write down both solutions.

Example 6 Solve $2 x^{2}-7 x+4=0$. Give your solutions in surd form.

$2 x^{2}-7 x+4=0$	
$2\left(x^{2}-\frac{7}{2} x\right)+4=0$	$\mathbf{1}$Before completing the square write $a x^{2}+b x+c$ in the form $a\left(x^{2}+\frac{b}{a} x\right)+c$ $2\left[\left(x-\frac{7}{4}\right)^{2}-\left(\frac{7}{4}\right)^{2}\right]+4=0$
$\mathbf{2}$Now complete the square by writing $x^{2}-\frac{7}{2} x$ in the form $\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}$ $2\left(x-\frac{7}{4}\right)^{2}-\frac{49}{8}+4=0$ $2\left(x-\frac{7}{4}\right)^{2}-\frac{17}{8}=0$	3Expand the square brackets. (continued on next page)

$2\left(x-\frac{7}{4}\right)^{2}=\frac{17}{8}$	$\mathbf{5}$Rearrange the equation to work out x. First, add $\frac{17}{8}$ to both sides.
$\left(x-\frac{7}{4}\right)^{2}=\frac{17}{16}$	$\mathbf{6} \quad$Divide both sides by 2.
$x-\frac{7}{4}= \pm \frac{\sqrt{17}}{4}$	7 $x= \pm \frac{\sqrt{17}}{4}+\frac{7}{4}$ thatare the square both sides. Remember a a value gives two answers.
So $x=\frac{7}{4}-\frac{\sqrt{17}}{4}$ or $x=\frac{7}{4}+\frac{\sqrt{17}}{4}$	$\mathbf{9}$ Add $\frac{7}{4}$ to both sides.

Practice

3 Solve by completing the square.
a $\quad x^{2}-4 x-3=0$
b $x^{2}-10 x+4=0$
c $x^{2}+8 x-5=0$
d $x^{2}-2 x-6=0$
e $2 x^{2}+8 x-5=0$
f $5 x^{2}+3 x-4=0$

4 Solve by completing the square.
a $(x-4)(x+2)=5$
b $\quad 2 x^{2}+6 x-7=0$
c $\quad x^{2}-5 x+3=0$

Hint

Get all terms onto one side of the equation

Solving quadratic equations by using the formula

A LEVEL LINKS

Scheme of work: 1 b . Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Any quadratic equation of the form $a x^{2}+b x+c=0$ can be solved using the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- If $b^{2}-4 a c$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for a, b and c.

Examples

Example 7 Solve $x^{2}+6 x+4=0$. Give your solutions in surd form.

$$
\begin{aligned}
& a=1, b=6, c=4 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-6 \pm \sqrt{6^{2}-4(1)(4)}}{2(1)} \\
& x=\frac{-6 \pm \sqrt{20}}{2} \\
& x=\frac{-6 \pm 2 \sqrt{5}}{2} \\
& x=-3 \pm \sqrt{5} \\
& \text { So } x=-3-\sqrt{5} \text { or } x=\sqrt{5}-3
\end{aligned}
$$

1 Identify a, b and c and write down the formula.
Remember that $-b \pm \sqrt{b^{2}-4 a c}$ is all over $2 a$, not just part of it.

2 Substitute $a=1, b=6, c=4$ into the formula.

3 Simplify. The denominator is 2, but this is only because $a=1$. The denominator will not always be 2 .
4 Simplify $\sqrt{20}$.
$\sqrt{20}=\sqrt{4 \times 5}=\sqrt{4} \times \sqrt{5}=2 \sqrt{5}$
5 Simplify by dividing numerator and denominator by 2 .
6 Write down both the solutions.

Example 8 Solve $3 x^{2}-7 x-2=0$. Give your solutions in surd form.

$$
\begin{aligned}
& a=3, b=-7, c=-2 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(3)(-2)}}{2(3)} \\
& x=\frac{7 \pm \sqrt{73}}{6} \\
& \text { So } x=\frac{7-\sqrt{73}}{6} \text { or } x=\frac{7+\sqrt{73}}{6}
\end{aligned}
$$

1 Identify a, b and c, making sure you get the signs right and write down the formula.
Remember that $-b \pm \sqrt{b^{2}-4 a c}$ is all over $2 a$, not just part of it.

2 Substitute $a=3, b=-7, c=-2$ into the formula.

3 Simplify. The denominator is 6 when $a=3$. A common mistake is to always write a denominator of 2 .
4 Write down both the solutions.

Practice

5 Solve, giving your solutions in surd form.
a $3 x^{2}+6 x+2=0$
b $\quad 2 x^{2}-4 x-7=0$

6 Solve the equation $x^{2}-7 x+2=0$
Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where a, b and c are integers.

7 Solve $10 x^{2}+3 x+3=5$
Give your solution in surd form.

Hint

Get all terms onto one side of the equation.

Extend

8 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary.
a $4 x(x-1)=3 x-2$
b $\quad 10=(x+1)^{2}$
c $\quad x(3 x-1)=10$

edexcel

Answers

1 a $\quad x=0$ or $x=-\frac{2}{3}$
b $\quad x=0$ or $x=\frac{3}{4}$
c $\quad x=-5$ or $x=-2$
d $\quad x=2$ or $x=3$
e $\quad x=-1$ or $x=4$
f $\quad x=-5$ or $x=2$
g $\quad x=4$ or $x=6$
h $x=-6$ or $x=6$
i $\quad x=-7$ or $x=4$
j $\quad x=3$
k $x=-\frac{1}{2}$ or $x=4$
l $x=-\frac{2}{3}$ or $x=5$

2 a $\quad x=-2$ or $x=5$
b $\quad x=-1$ or $x=3$
c $\quad x=-8$ or $x=3$
d $\quad x=-6$ or $x=7$
e $\quad x=-5$ or $x=5$
f $\quad x=-4$ or $x=7$
g $\quad x=-3$ or $x=2 \frac{1}{2}$
h $x=-\frac{1}{3}$ or $x=2$

3
a $\quad x=2+\sqrt{7}$ or $x=2-\sqrt{7}$
b $\quad x=5+\sqrt{21}$ or $x=5-\sqrt{21}$
c $\quad x=-4+\sqrt{21}$ or $x=-4-\sqrt{21}$
d $\quad x=1+\sqrt{7}$ or $x=1-\sqrt{7}$
e $\quad x=-2+\sqrt{6.5}$ or $x=-2-\sqrt{6.5}$
f $x=\frac{-3+\sqrt{89}}{10}$ or $x=\frac{-3-\sqrt{89}}{10}$
$4 \quad$ a $\quad x=1+\sqrt{14}$ or $x=1-\sqrt{14}$
b $x=\frac{-3+\sqrt{23}}{2}$ or $x=\frac{-3-\sqrt{23}}{2}$
c $x=\frac{5+\sqrt{13}}{2}$ or $x=\frac{5-\sqrt{13}}{2}$
$5 \quad$ a $\quad x=-1+\frac{\sqrt{3}}{3}$ or $x=-1-\frac{\sqrt{3}}{3}$
b $\quad x=1+\frac{3 \sqrt{2}}{2}$ or $x=1-\frac{3 \sqrt{2}}{2}$
$6 x=\frac{7+\sqrt{41}}{2}$ or $x=\frac{7-\sqrt{41}}{2}$
$7 x=\frac{-3+\sqrt{89}}{20}$ or $x=\frac{-3-\sqrt{89}}{20}$
$8 \quad \mathbf{a} \quad x=\frac{7+\sqrt{17}}{8}$ or $x=\frac{7-\sqrt{17}}{8}$
b $\quad x=-1+\sqrt{10}$ or $x=-1-\sqrt{10}$
c $x=-1 \frac{2}{3}$ or $x=2$

Sketching quadratic graphs

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- The graph of the quadratic function $y=a x^{2}+b x+c$, where $a \neq 0$, is a curve called a parabola.
- Parabolas have a line of symmetry and

 a shape as shown.
- To sketch the graph of a function, find the points where the graph intersects the axes.
- To find where the curve intersects the y-axis substitute $x=0$ into the function.
- To find where the curve intersects the x-axis substitute $y=0$ into the function.
- At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at these points are horizontal.
- To find the coordinates of the maximum or minimum point (turning points) of a quadratic curve (parabola) you can use the completed square form of the function.

Examples

Example 1 Sketch the graph of $y=x^{2}$.

The graph of $y=x^{2}$ is a parabola.

When $x=0, y=0$.
$a=1$ which is greater than zero, so the graph has the shape:

Example 2 Sketch the graph of $y=x^{2}-x-6$.

When $x=0, y=0^{2}-0-6=-6$
So the graph intersects the y-axis at ($0,-6$)
When $y=0, x^{2}-x-6=0$
$(x+2)(x-3)=0$
$x=-2$ or $x=3$

So,
the graph intersects the x-axis at $(-2,0)$ and (3,0)

1 Find where the graph intersects the y-axis by substituting $x=0$.

2 Find where the graph intersects the x-axis by substituting $y=0$.
3 Solve the equation by factorising.
4 Solve $(x+2)=0$ and $(x-3)=0$.
$5 a=1$ which is greater than zero, so the graph has the shape:
(continued on next page)

$x^{2}-x-6=\left(x-\frac{1}{2}\right)^{2}-\frac{1}{4}-6$	6To find the turning point, complete the square.
$=\left(x-\frac{1}{2}\right)^{2}-\frac{25}{4}$	When $\left(x-\frac{1}{2}\right)^{2}=0, x=\frac{1}{2}$ and $y=-\frac{25}{4}$, so the turning point is at the point $\left(\frac{1}{2},-\frac{25}{4}\right)$ The turning point is the minimum value for this expression and occurs when the term in the bracket is equal to zero.

Practice

1 Sketch the graph of $y=-x^{2}$.

2 Sketch each graph, labelling where the curve crosses the axes.
a $y=(x+2)(x-1)$
b $\quad y=x(x-3)$
c $\quad y=(x+1)(x+5)$

3 Sketch each graph, labelling where the curve crosses the axes.
a $y=x^{2}-x-6$
b $\quad y=x^{2}-5 x+4$
c $\quad y=x^{2}-4$
d $y=x^{2}+4 x$
e $y=9-x^{2}$
f $\quad y=x^{2}+2 x-3$

4 Sketch the graph of $y=2 x^{2}+5 x-3$, labelling where the curve crosses the axes.

Extend

5 Sketch each graph. Label where the curve crosses the axes and write down the coordinates of the turning point.
a $y=x^{2}-5 x+6$
b $\quad y=-x^{2}+7 x-12$
c $\quad y=-x^{2}+4 x$

6 Sketch the graph of $y=x^{2}+2 x+1$. Label where the curve crosses the axes and write down the equation of the line of symmetry.

edexcel :\%

Answers

1

2 a

b

b

e

c

C

d

f

edexcel :\%

4

5
a
b

c

6

Line of symmetry at $x=-1$.

Solving linear simultaneous equations using the elimination method

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous

Key points

- Two equations are simultaneous when they are both true at the same time.
- Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations.
- Make sure that the coefficient of one of the unknowns is the same in both equations.
- Eliminate this equal unknown by either subtracting or adding the two equations.

Examples

Example 1 Solve the simultaneous equations $3 x+y=5$ and $x+y=1$

$\begin{array}{r} 3 x+y=5 \\ -\quad x+y=1 \\ \hline \end{array}$	1 Subtract the second equation from the first equation to eliminate the y
$2 x=4$	term.
So $x=2$	
Using $x+y=1$	To find the value of y, substitute $x=2$ into one of the original equations.
$2+y=1$	
So $y=-1$	
Check:	3 Substitute the values of x and y into
equation 1: $3 \times 2+(-1)=5$ YES	both equations to check your
equation 2: $2+(-1)=1 \quad$ YES	answers.

Example 2 Solve $x+2 y=13$ and $5 x-2 y=5$ simultaneously.

Example 3 Solve $2 x+3 y=2$ and $5 x+4 y=12$ simultaneously.

$$
\begin{array}{r}
(2 x+3 y=2) \times 4 \rightarrow
\end{array} \begin{array}{r}
8 x+12 y=8 \\
(5 x+4 y=12) \times 3 \rightarrow \quad \begin{array}{r}
15 x+12 y
\end{array}=36 \\
\hline 7 x
\end{array}
$$

$$
\text { So } x=4
$$

Using $2 x+3 y=2$

$$
2 \times 4+3 y=2
$$

So $y=-2$
Check:
equation 1: $2 \times 4+3 \times(-2)=2 \quad$ YES equation 2: $5 \times 4+4 \times(-2)=12$ YES

1 Multiply the first equation by 4 and the second equation by 3 to make the coefficient of y the same for both equations. Then subtract the first equation from the second equation to eliminate the y term.

2 To find the value of y, substitute $x=4$ into one of the original equations.

3 Substitute the values of x and y into both equations to check your answers.

Practice

Solve these simultaneous equations.

$$
1 \quad \begin{array}{ll}
4 x+y=8 \\
& x+y=5
\end{array}
$$

$2 \quad 3 x+y=7$
$3 x+2 y=5$
$3 \quad 4 x+y=3$
$3 x-y=11$
$4 \quad 3 x+4 y=7$
$x-4 y=5$
$5 \quad 2 x+y=11$
$x-3 y=9$
$6 \quad 2 x+3 y=11$
$3 x+2 y=4$

Solving linear simultaneous equations using the substitution method

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous
Textbook: Pure Year 1, 3.1 Linear simultaneous equations

Key points

- The subsitution method is the method most commonly used for A level. This is because it is the method used to solve linear and quadratic simultaneous equations.

Examples

Example 4 Solve the simultaneous equations $y=2 x+1$ and $5 x+3 y=14$

```
\(5 x+3(2 x+1)=14\)
\(5 x+6 x+3=14\)
\(11 x+3=14\)
\(11 x=11\)
So \(x=1\)
Using \(y=2 x+1\)
    \(y=2 \times 1+1\)
So \(y=3\)
Check:
    equation 1: \(3=2 \times 1+1 \quad\) YES
    equation \(2: 5 \times 1+3 \times 3=14\) YES
```

1 Substitute $2 x+1$ for y into the second equation.
2 Expand the brackets and simplify.
3 Work out the value of x.

4 To find the value of y, substitute $x=1$ into one of the original equations.

5 Substitute the values of x and y into both equations to check your answers.

Example 5 Solve $2 x-y=16$ and $4 x+3 y=-3$ simultaneously.

```
y=2x-16
4x+3(2x-16)=-3
4x+6x-48=-3
10x-48=-3
10x=45
So }x=4\frac{1}{2
Using }y=2x-1
    y=2\times4\frac{1}{2}-16
So }y=-
Check:
equation 1: 2 < 4\frac{1}{2}-(-7)=16 YES
equation 2: 4 4 4\frac{1}{2}+3\times(-7)=-3 YES
```

1 Rearrange the first equation.
2 Substitute $2 x-16$ for y into the second equation.
3 Expand the brackets and simplify.
4 Work out the value of x.

5 To find the value of y, substitute $x=4 \frac{1}{2}$ into one of the original equations.

6 Substitute the values of x and y into both equations to check your answers.

edexcel :\%

Practice

Solve these simultaneous equations.
$7 y=x-4$
$2 x+5 y=43$
$8 \quad y=2 x-3$
$5 x-3 y=11$
$9 \quad 2 y=4 x+5$
$9 x+5 y=22$
$102 x=y-2$
$8 x-5 y=-11$
$11 \begin{aligned} & 3 x+4 y=8 \\ & 2 x-y=-13\end{aligned}$
$123 y=4 x-7$
$2 y=3 x-4$
$133 x=y-1$
$2 y-2 x=3$
$143 x+2 y+1=0$
$4 y=8-x$

Extend

15 Solve the simultaneous equations $3 x+5 y-20=0$ and $2(x+y)=\frac{3(y-x)}{4}$.

edexcel :\%

Answers

$1 x=1, y=4$
$2 x=3, y=-2$
$3 x=2, y=-5$
$4 x=3, y=-\frac{1}{2}$
$5 x=6, y=-1$
$6 \quad x=-2, y=5$
$7 x=9, y=5$
$8 \quad x=-2, y=-7$
$9 \quad x=\frac{1}{2}, y=3 \frac{1}{2}$
$10 x=\frac{1}{2}, y=3$
$11 x=-4, y=5$
$12 x=-2, y=-5$
$13 x=\frac{1}{4}, y=1 \frac{3}{4}$
$14 x=-2, y=2 \frac{1}{2}$
$15 x=-2 \frac{1}{2}, y=5 \frac{1}{2}$

Solving linear and quadratic simultaneous equations

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Examples

Example 1 Solve the simultaneous equations $y=x+1$ and $x^{2}+y^{2}=13$

1 Substitute $x+1$ for y into the second equation.
2 Expand the brackets and simplify.

3 Factorise the quadratic equation.
4 Work out the values of x.
To find the value of y, substitute both values of x into one of the original equations.

Substitute both pairs of values of x and y into both equations to check your answers.

Example 2 Solve $2 x+3 y=5$ and $2 y^{2}+x y=12$ simultaneously.

$$
\begin{aligned}
& x=\frac{5-3 y}{2} \\
& 2 y^{2}+\left(\frac{5-3 y}{2}\right) y=12 \\
& 2 y^{2}+\frac{5 y-3 y^{2}}{2}=12 \\
& 4 y^{2}+5 y-3 y^{2}=24 \\
& y^{2}+5 y-24=0 \\
& (y+8)(y-3)=0 \\
& \text { So } y=-8 \text { or } y=3 \\
& \text { Using } 2 x+3 y=5 \\
& \text { When } y=-8, \quad 2 x+3 \times(-8)=5, \quad x=14.5 \\
& \text { When } y=3, \quad 2 x+3 \times 3=5, \quad x=-2
\end{aligned}
$$

So the solutions are

$$
x=14.5, y=-8 \text { and } x=-2, y=3
$$

Check:
equation $1: 2 \times 14.5+3 \times(-8)=5$
YES and $2 \times(-2)+3 \times 3=5$

YES
equation $2: 2 \times(-8)^{2}+14.5 \times(-8)=12$ YES and $2 \times(3)^{2}+(-2) \times 3=12 \quad$ YES

1 Rearrange the first equation.
2 Substitute $\frac{5-3 y}{2}$ for x into the second equation. Notice how it is easier to substitute for x than for y.
3 Expand the brackets and simplify.

4 Factorise the quadratic equation.
5 Work out the values of y.
6 To find the value of x, substitute both values of y into one of the original equations.

7 Substitute both pairs of values of x and y into both equations to check your answers.

Practice

Solve these simultaneous equations.

$$
1 \quad \begin{array}{ll}
y=2 x+1 \\
& x^{2}+y^{2}=10
\end{array}
$$

$3 y=x-3$
$x^{2}+y^{2}=5$
$5 \quad y=3 x-5$
$y=x^{2}-2 x+1$

$$
\begin{array}{ll}
7 & y=x+5 \\
& x^{2}+y^{2}=25
\end{array}
$$

$9 y=2 x$

$y^{2}-x y=8$
$2 y=6-x$
$x^{2}+y^{2}=20$
$4 y=9-2 x$
$x^{2}+y^{2}=17$
$6 \quad y=x-5$
$y=x^{2}-5 x-12$
$8 \quad y=2 x-1$
$x^{2}+x y=24$
$10 \quad 2 x+y=11$
$x y=15$

Extend

$11 x-y=1$
$x^{2}+y^{2}=3$
$12 y-x=2$
$x^{2}+x y=3$

edexcel :\%

Answers

$1 x=1, y=3$

$$
x=-\frac{9}{5}, y=-\frac{13}{5}
$$

$2 x=2, y=4$

$$
x=4, y=2
$$

$3 x=1, y=-2$

$$
x=2, y=-1
$$

$4 \quad x=4, y=1$
$x=\frac{16}{5}, y=\frac{13}{5}$
$5 \quad x=3, y=4$
$x=2, y=1$
$6 \quad x=7, y=2$
$x=-1, y=-6$
$7 x=0, y=5$
$x=-5, y=0$
$8 x=-\frac{8}{3}, y=-\frac{19}{3}$
$x=3, y=5$
$9 x=-2, y=-4$
$x=2, y=4$
$10 x=\frac{5}{2}, y=6$
$x=3, y=5$
$11 x=\frac{1+\sqrt{5}}{2}, y=\frac{-1+\sqrt{5}}{2}$
$x=\frac{1-\sqrt{5}}{2}, y=\frac{-1-\sqrt{5}}{2}$
$12 x=\frac{-1+\sqrt{7}}{2}, y=\frac{3+\sqrt{7}}{2}$
$x=\frac{-1-\sqrt{7}}{2}, y=\frac{3-\sqrt{7}}{2}$

Solving simultaneous equations graphically

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous

Key points

- You can solve any pair of simultaneous equations by drawing the graph of both equations and finding the point/points of intersection.

Examples

Example 1 Solve the simultaneous equations $y=5 x+2$ and $x+y=5$ graphically.

$$
\begin{aligned}
& y=5-x \\
& y=5-x \text { has gradient }-1 \text { and } y \text {-intercept } 5 . \\
& y=5 x+2 \text { has gradient } 5 \text { and } y \text {-intercept } 2 .
\end{aligned}
$$

Lines intersect at

$$
x=0.5, y=4.5
$$

Check:
First equation $y=5 x+2$:

$$
4.5=5 \times 0.5+2 \quad \text { YES }
$$

Second equation $x+y=5$: $0.5+4.5=5 \quad$ YES

1 Rearrange the equation $x+y=5$ to make y the subject.

2 Plot both graphs on the same grid using the gradients and y-intercepts.

3 The solutions of the simultaneous equations are the point of intersection.

4 Check your solutions by substituting the values into both equations.

Example 2 Solve the simultaneous equations $y=x-4$ and $y=x^{2}-4 x+2$ graphically.

\boldsymbol{x}	0	1	2	3	4
\boldsymbol{y}	2	-1	-2	-1	2

The line and curve intersect at

$$
x=3, y=-1 \text { and } x=2, y=-2
$$

Check:
First equation $y=x-4$:

$$
\begin{array}{ll}
-1=3-4 & \text { YES } \\
-2=2-4 & \text { YES }
\end{array}
$$

Second equation $y=x^{2}-4 x+2$:

$$
\begin{array}{ll}
-1=3^{2}-4 \times 3+2 & \text { YES } \\
-2=2^{2}-4 \times 2+2 & \text { YES }
\end{array}
$$

1 Construct a table of values and calculate the points for the quadratic equation.

2 Plot the graph.
3 Plot the linear graph on the same grid using the gradient and y-intercept.
$y=x-4$ has gradient 1 and y-intercept -4 .

4 The solutions of the simultaneous equations are the points of intersection.

5 Check your solutions by substituting the values into both equations.

Practice

1 Solve these pairs of simultaneous equations graphically.
a $y=3 x-1$ and $y=x+3$
b $\quad y=x-5$ and $y=7-5 x$
c $y=3 x+4$ and $y=2-x$

2 Solve these pairs of simultaneous equations graphically.
a $x+y=0$ and $y=2 x+6$
b $\quad 4 x+2 y=3$ and $y=3 x-1$
c $2 x+y+4=0$ and $2 y=3 x-1$

Hint

Rearrange the equation to make y the subject.

edexcel ㅇ夫⿻上丨匕刂

3 Solve these pairs of simultaneous equations graphically．
a $y=x-1$ and $y=x^{2}-4 x+3$
b $y=1-3 x$ and $y=x^{2}-3 x-3$
c $y=3-x$ and $y=x^{2}+2 x+5$

4 Solve the simultaneous equations $x+y=1$ and $x^{2}+y^{2}=25$ graphically．

Extend

5 a Solve the simultaneous equations $2 x+y=3$ and $x^{2}+y=4$
i graphically
ii algebraically to 2 decimal places．
b Which method gives the more accurate solutions？Explain your answer．

Answers

1 a $x=2, y=5$
b $x=2, y=-3$
c $x=-0.5, y=2.5$

2 a $\quad x=-2, y=2$
b $x=0.5, y=0.5$
c $x=-1, y=-2$
3 a $\quad x=1, y=0$ and $x=4, y=3$
b $\quad x=-2, y=7$ and $x=2, y=-5$
c $x=-2, y=5$ and $x=-1, y=4$
$4 \quad x=-3, y=4$ and $x=4, y=-3$
$5 \quad$ a i $\quad x=2.5, y=-2$ and $x=-0.5, y=4$
ii $x=2.41, y=-1.83$ and $x=-0.41, y=3.83$
b Solving algebraically gives the more accurate solutions as the solutions from the graph are only estimates, based on the accuracy of your graph.

